L M A N

Lampiran 1

MODUL AJAR KELAS EKSPERIMEN BERKENALAN DENGAN ENERGI

IPAS ILMU PENGETAHUAN ALAM DAN SOSIAL

INFORMASI UMUM PERANGKAT AJAR

Nama : MELISA ANGELTA DEPARI

Instansi : SD Negeri 101884 Limau Manis

Tahun :2024/2025

Jenjang Sekolah : Sekolah Dasar

Kelas : III (Tiga)

Alokasi Waktu : 2 X 35 Menit

CAPAIAN PEMBELAJARAN

Peserta didik mengidentifikasi sumber dan bentuk energi serta menjelaskan proses perubahan bentuk energi dalam kehidupan sehari-hari

TUJUAN PEMBELAJARAN

- Fase B
- Elemen: Berkenalan Dengan Energi
- Tujuan Pembelajaran:

Peserta didik dapat mengidentifikasi sumber dan bentuk energi serta proses perubahan bentuk energi dalam kehidupan sehari-hari

- Indikator Pencapaian Tujuan Pembelajaran:
 - 1. Peserta didik dapat menyebutkan dua sumber energi yang ada disekitar mereka
 - 2. Peserta didik mengenali perubahan bentuk energi dalam kehidupan sehari-hari
 - 3. Peserta didik dapat menjelaskan peran energi dalam kehidupan sehari-hari
 - 4. Peserta didik dapat menganalisis pentingnya berbagai sumber energi dalam kehidupan sehari-hari.
- Konsep Utama: sumber energi, bentuk-bentuk energi, perubahan bentuk energi pada *Big Book*

KOMPETENSI AWAL

- Peserta didik pada awalnya belum mampu memahami macam-macam sumber energi.
 Setelah pembelajaran, Peserta didik dapat memahami macam-macam sumber energi
- 2. Peserta didik pada awalnya belum mengenali perubahan bentuk energi. Setelah pembelajaran, Peserta didik dapat mengenali perubahan bentuk energi
- 3. Peserta didik pada awalnya belum mampu menjelaskan peran energi dalam kehidupan sehari-hari.Setelah Pembelajaran,Peserta didik dapat menjelaskan peran energi dalam kehidupan sehari-hari
- 4. Peserta didik Pada Awalnya belum mampu Menganalisis pentingnya berbagai sumber energi bagi kehidupan sehari-hari.Setelah Pembelajaran, Peserta didik dapat Menganalisis pentingnya berbagai sumber energi bagi kehidupan sehari-hari.

PROFIL PELAJAR PANCASILA

- 1. Beriman bertaqwa kepada Tuhan Yang Maha Esa dan berakhlak mulia
- 2. Bergotong royong
- 3. Mandiri
- 4. Kreatif
- 5. Berkebhinekaan Global

SARANA DAN PRASARANA

- 1. Sumber belajar: buku pegangan siswa
- 2. Big Book:
 - Alat:

Gunting

Lem

Penggaris

Pensil

Spidol

Bahan :

Karton / kertas warna / Kain panel / Gambar / kawat

3. Alat: Leptop, Buku yang Relevan

TARGET PESERTA DIDIK

1. Peserta didik regular

MODEL PEMBELAJARAN:

Model Tipe Think Pair Share (TPS)

METODE PEMBELAJARAN:

Ceramah, diskusi, tanya jawab, penugasan

MODEL PEMBELAJARAN:

Luring

KOMPONEN INTI

- 1. Peserta didik mampu menyebutkan dua sumber energi yang ada di sekitar mereka.
- 2. Peserta didik mampu mengenali perubahan bentuk energi dalam kehidupan seharihari
- 3. Peserta didik mampu menjelaskan peran energi dalam kehidupan sehari-hari
- 4. Peserta didik mampu menganalisis pentingnya berbagai sumber energi bagi kehidupan sehari-hari.

PEMAHAMAN BERMAKNA

Meningkatkan pemahaman siswa dalam memahami konsep sumber energi, bentuk-bentuk energi, perubahan bentuk energi yang ada di dalam kehidupan sehari-hari (pada Media *Big Book*)

PERTANYAAN PEMANTIK

- 1. Mengapa baju yang dijemur bisa kering?
- 2. Apa yang menyebabkan TV di rumahmu bisa menyala?
- 3. Tuliskan jenis-jenis perubahan energi?

URUTAN KEGIATAN PEMBELAJARAN

Kegiatan Awal

1. Orientasi

- Membuka pelajaran dengan salam pembuka
- Guru menugaskan ketua kelas untuk memimpin do'a untuk memulai pelajaran
 (Religius, Beriman bertaqwa kepada Tuhan Yang Maha Esa)
- Guru mengecek kesiapan diri dengan mengisi lembar kehadiran dan memeriksa kesiapan pakaian, posisi, dan tempat duduk disesuaikan dengan kegiatan pembelajaran
- Setelah itu, Guru melakukan pre test terlebih dahulu kepada siswa.

2. Apersepsi

- Guru mengaitkan materi pembelajaran yang akan dilakukan dengan pengalaman peserta didik terhadap materi sebelumnya, mengingatkan kembali materi dengan memberikan pertanyaan pemantik (Comunication)
- Guru menyampaikan tentang capaian tujuan pembelajaran yang akan dipelajari pada pagi hari ini (Comunication)
- Guru memberikan motivasi kepada peserta didik terkait manfaat mempelajari sumber dan bentuk energi serta proses perubahan bentuk energi dalam kehidupan sehari-hari (Comunication)
- Menginstruksikan kepada peserta didik untuk menyiapkan pelajarannya. (Mandiri)
 Kegiatan inti

1. Menentukan pertanyaan atau masalah utama

- a. Guru meminta siswa mengamati media pembelajaran *Big Book* tentang berkenalan dengan energi
- b. Dari Media pembelajaran *Big Book* tersebut, Guru memberikan pertanyaan
 - Mengapa kincir angin bisa bergerak?
 - Sebutkan Contoh alat yang bisa bergerak dalam energi?
 - Mengapa TV bisa menyala?
- c. Peserta didik menjawab pertanyaan yang diajukan guru.
- d. Siswa diajak untuk memahami permasalahan "bagaimana proses perubahan bentuk energi yang terjadi pada energi listrik

- 2. Guru memberikan penjelasan melalui *Big Book* terkait pembahasan materi macammacam sumber energi dan bentuk energi
- 3. Guru dan siswa melakukan tanya jawab terkait materi macam-macam sumber energi dan bentuk energi.
- 4. Merencanakan proyek
 - a. Guru membagi kelas menjadi berkelompok, masing-masing kelompok terdiri dari 4 kelompok dan 6-8 orang siswa yang bersifat heterogen.
 - b. Guru menjelaskan media *Big Book* tentang berkenalan dengan energi setelah melakukan pembelajaran ini.
 - c. Siswa mengamati tentang penjelasan tentang berkenalan dengan energi dalam kehidupan sehari-hari.
 - d. Siswa berdiskusi menuliskan tentang materi berkenalan dengan energi dalam kehidupan sehari-hari dengan kelompok masing-masing.
- 5. Mempresentasikan dan menguji hasil penyelesaian proyek
 - a. Guru meminta masing-masing mewakili kelompok untuk maju ke depan atau berdua maju Bersama untuk melaporkan hasil diskusinya keseluruh siswa. (Comunication)
 - b. Guru memberikan kesempatan kepada kelompok lain untuk bertanya kepada kelompok yang sedang melakukan persentase (Comunication)
- 6. Mengevaluasi dan refleksi proses dan hasil proyek
 - a. Guru memberikan penilaian kepada setiap kelompok yang sudah peresentase
 - b. Siswa mengumpulkan hasil diskusinya kepada guru setiap perwakilan kelompok masing-masing

Kegiatan Akhir

- 1. Guru dan siswa memberikan kesimpulan, penguatan pembelajaran tentang sumber energi, bentuk energi serta proses perubahan bentuk energi dalam kehidupan sehari hari (Comunication)
- 2. Guru dan siswa melakukan refleksi mengenai kegiatan pembelajaran.
 - a. Apa saja yang sudah dipelajari pada hari ini?
 - b. Apa kegiatan yang paling disukai?
 - c. Materi apa yang kalian kuasai?
- 3. Guru melakukan test akhir yang post test kepada siswa
- 4. Guru menyampaikan pesan moral (**Comunication**)
- Guru menugaskan ketua kelas untuk memimpin do'a untuk mengakhiri pelajaran (Religius, Beriman bertaqwa kepada Tuhan Yang Maha Esa)
- 6. Guru mengakhiri pembelajaran dengan salam penutup

REFLEKSI PENDIDIK

Agar proses belajar selanjutnya lebih baik lagi, maka refleksi guru yang perlu dikembangkan, yaitu :

- 1. Hal apa yang sudah berjalan dengan baik di dalam kelas? Apa yang saya sukai dari kegiatan pembelajaran ini dan apa yang tidak saya sukai?
- 2. Pelajaran moral apa yang saya dapatkan selama pembelajaran?
- 3. Apa yang ingin saya ubah untuk meningkatkan kapasitas diri sehingga pembelajaranlebih baik lagi?
- 4. Dengan pengetahuan yang saya dapatkan sekarang, apa yang akan saya lakukan kedepannya jika harus mengajar kegiatan yang sama?
- 5. Dikegiatan mana peserta didik paling banyak menikmati proses pembelajaran?
- 6. Bagaimana anak didik mengatasi masalah yang dihadapi dan apa peran saya pada saat itu?

LAMPIRAN-LAMPIRAN

- 1. Bahan ajar
- 2. LKPD siswa yang dirancang oleh guru sesuai dengan kebutuhan yang akan dilaksankan
- 3. Media pembelajaran

BAHAN BACAAN PENDIDIK

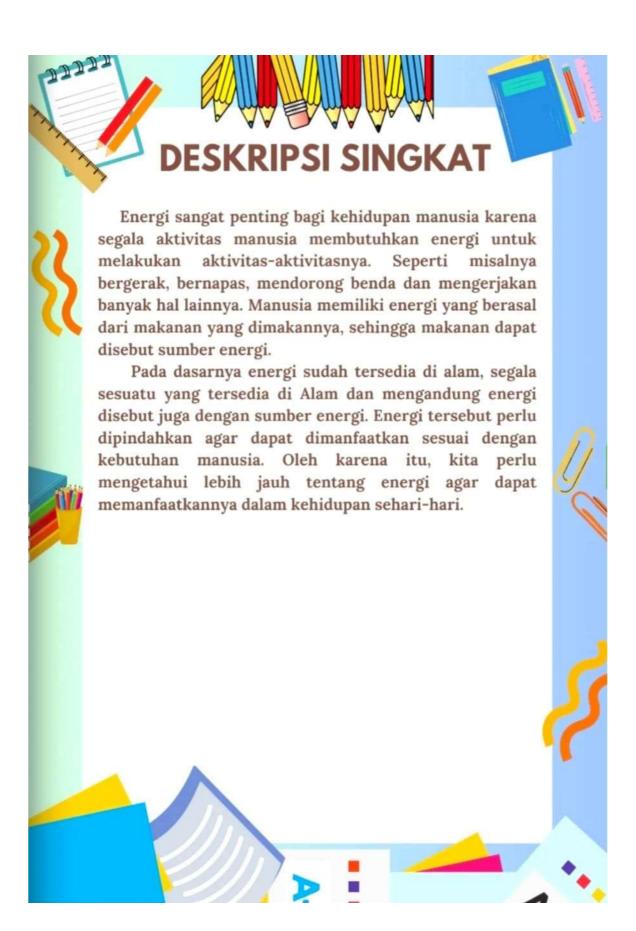
Buku Tematik Terpadu Kurikulum 2013 Kelas III Energi dan

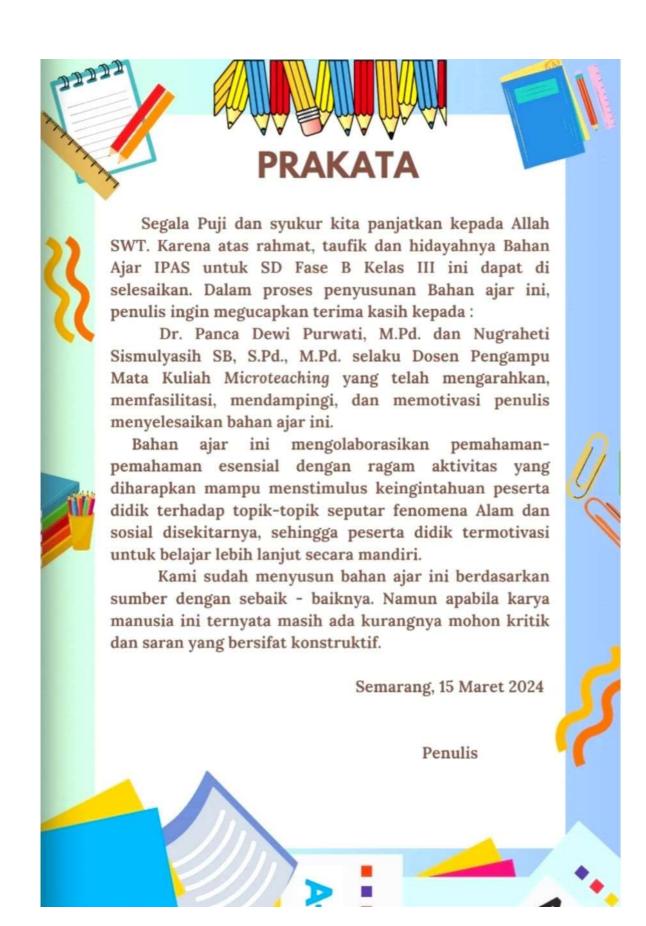
Perubahannya Buku Energi di Sekitarku Ilmu Pengetahuan Alam (IPA)

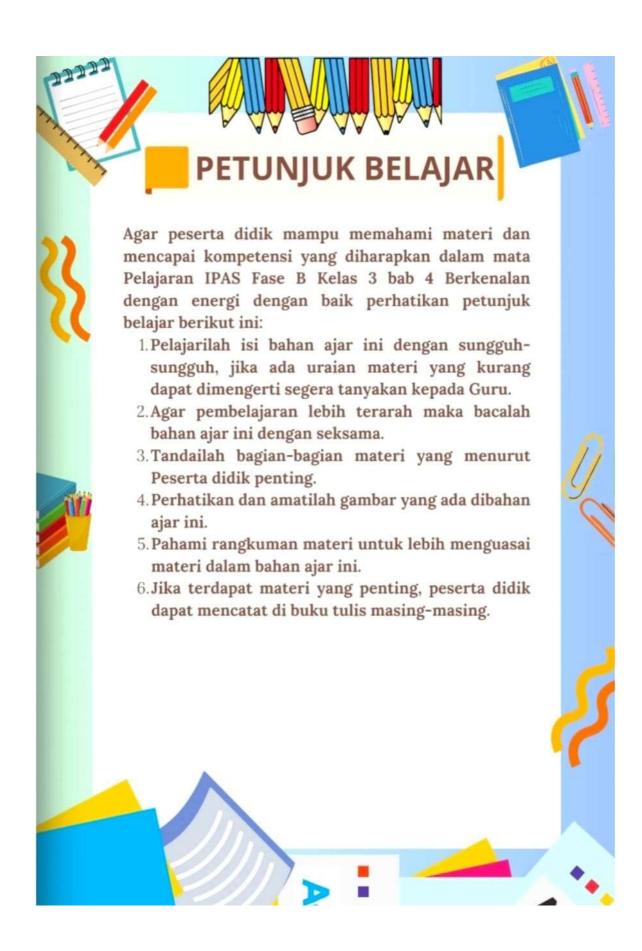
Buku Asyiknya Belajar Ilmu Pengetahuan Alam untuk Kelas III SD dan MI

BAHAN BACAAN PESERTA DIDIK

Buku Tematik Terpadu Kurikulum 2013 Kelas III Energi dan Perubahannya


DAFTAR PUSTAKA


- Amelia Fitri,dkk 2022.Buku Panduan Guru Ilmu Pengetahuan Alam dan Sosial untuk SD/MI Kelas III. Jakarta: Kementrian pendidikan, Kebudayaan,Riset dan Teknologi.
- Amalia Fitri, dkk. 2022. Buku Panduan Guru Ilmu Pengetahuan Alam dan Sosial untuk SD kelas III. Jakarta: Kemendikbudristek RI.


Kepala sekolah SDN 101884 Limau Manis Guru Kelas III A UPT SPF SD Negeri 101884 Limau Manis Peneliti

MARTURASI BUTAR-BUTAR S.Pd NIP.196607131993012002 Melisa Angelta Depari

Lampiran 3

MODUL AJAR KELAS KONTROL BERKENALAN DENGAN ENERGI

IPAS Ilmu Pengetahuan Alam dan Sosial

INFORMASI UMUM PERANGKAT AJAR

Nama : MELISA ANGELTA DEPARI

Instansi : SD Negeri 101884 Limau Manis

Tahun : 2024/2025

Jenjang Sekolah : Sekolah Dasar

Kelas : III (Tiga)

Alokasi Waktu : 2 X 35 Menit

CAPAIAN PEMBELAJARAN

Peserta didik mengidentifikasi sumber dan bentuk energi serta menjelaskan proses perubahan bentuk energi dalam kehidupan sehari-hari

TUJUAN PEMBELAJARAN

- Fase B
- Elemen: Berkenalan Dengan Energi
- Tujuan Pembelajaran:

Peserta didik dapat mengidentifikasi sumber dan bentuk energi serta proses perubahan bentuk energi dalam kehidupan sehari-hari

- Indikator Pencapaian Tujuan Pembelajaran:
 - 1. Peserta didik dapat menyebutkan dua sumber energi yang ada disekitar mereka
 - 2. Peserta didik mengenali perubahan bentuk energi dalam kehidupan sehari-hari
 - 3. Peserta didik dapat menjelaskan peran energi dalam kehidupan sehari-hari
 - 4. Peserta didik dap<mark>at menganalisis pentingn</mark>ya berbagai sumber energi dalam kehidupan sehari-hari.
- Konsep Utama: sumber energi, bentuk-bentuk energi, perubahan bentuk energi pada Big Book

KOMPETENSI AWAL

- 1. Peserta didik pada awalnya belum mampu memahami macam-macam sumber energi. Setelah pembelajaran, Peserta didik dapat memahami macam-macam sumber energi
- 2. Peserta didik pada awalnya belum mengenali perubahan bentuk energi. Setelah pembelajaran, Peserta didik dapat mengenali perubahan bentuk energi
- 3. Peserta didik pada awalnya belum mampu menjelaskan peran energi dalam kehidupan sehari-hari.Setelah Pembelajaran,Peserta didik dapat menjelaskan peran energi dalam kehidupan sehari-hari
- 4. Peserta didik Pada Awalnya belum mampu Menganalisis pentingnya berbagai sumber energi bagi kehidupan sehari-hari.Setelah Pembelajaran, Peserta didik dapat Menganalisis pentingnya berbagai sumber energi bagi kehidupan seharihari.

PROFIL PELAJAR PANCASILA

- 1. Beriman bertaqwa kepada Tuhan Yang Maha Esa dan berakhlak mulia
- 2. Bergotong royong
- 3.Mandiri
- 4 .Kreatif
- 5. Berkebhinekaan Global

SARANA DAN PRASARANA

- 1. Sumber belajar: buku pegangan siswa
- 2. Model *Tipe Think Pair Share* (TPS)
- 3. Alat: Leptop, Buku yang Relevan

TARGET PESERTA DIDIK

1. Peserta didik regular

MODEL PEMBELAJARAN:

Model Tipe Think Pair Share (TPS)

METODE PEMBELAJARAN:

Ceramah, diskusi, tanya jawab, penugasan

MODEL PEMBELAJARAN:

Luring

KOMPONEN INTI

- 1. Peserta didik mampu menyebutkan dua sumber energi yang ada di sekitar mereka.
- 2. Peserta didik mampu mengenali perubahan bentuk energi dalam kehidupan sehari-hari
- 3.Peserta didik mampu menjelaskan peran energi dalam kehidupan sehari-hari
- 4.Peserta didik mampu menganalisis pentingnya berbagai sumber energi bagi kehidupan sehari-hari.

PERTANYAAN PEMANTIK

- 1. Mengapa baju yang dijemur bisa kering?
- 2. Apa yang menyebabkan TV di rumahmu bisa menyala?
- 3. Tuliskan jenis-jenis perubahan energi?

URUTAN KEGIATAN PEMBELAJARAN

Kegiatan Awal

1.Orientasi

- Membuka pelajaran dengan salam pembuka
- Guru menugaskan ketua kelas untuk memimpin do'a untuk memulai pelajaran (Religius, Beriman bertaqwa kepada Tuhan Yang Maha Esa)
- Guru mengecek kesiapan diri dengan mengisi lembar kehadiran dan memeriksa kesiapan pakaian, posisi, dan tempat duduk disesuaikan dengan kegiatan pembelajaran
- Setelah itu, Guru melakukan *Pre Test* terlebih dahulu kepada siswa.

2. Apersepsi

- Guru mengaitkan materi pembelajaran yang akan dilakukan dengan pengalaman peserta didik terhadap materi sebelumnya, mengingatkan kembali materi dengan memberikan pertanyaan pemantik (Comunication)
- Guru menyampaikan tentang capaian tujuan pembelajaran yang akan dipelajari pada pagi hari ini (Comunication)
- Guru memberikan motivasi kepada peserta didik terkait manfaat mempelajari sumber dan bentuk energi serta proses perubahan bentuk energi dalam kehidupan sehari-hari (Comunication)
- Menginstruksikan kepada peserta didik untuk menyiapkan pelajarannya. (Mandiri)

Kegiatan inti

- 1. Menentukan pertanyaan atau masalah utama
 - a. Guru meminta siswa mengamati pembelajaran tentang berkenalan dengan energi secara konvensional
 - b. Dari mengamati pembelajaran yang telah di jelaskan Guru meminta siswa untuk menjawab pertanyaan seceara lisan.
 - Mengapa kincir angin bisa bergerak?
 - Sebutkan Contoh alat yang bisa bergerak dalam energi?
 - Mengapa TV bisa menyala?
 - c. Peserta didik menjawab pertanyaan yang diajukan guru.
 - d. Siswa diajak untuk memahami permasalahan "bagaimana proses perubahan bentuk energi yang terjadi pada energi listrik
- 2. Guru memberikan penjelasan secara konvensional terkait sengan pembahasan materi berkenalan dengan energi
- 3. Guru dan siswa melakukan tanya jawab terkait materi macam-macam sumber energi dan bentuk energi.
- 4. Merencanakan proyek
 - a. Guru membagi kelas menjadi berkelompok, masing-masing kelompok terdiri dari 4 kelompok dan 6-8 orang siswa yang bersifat heterogen.
 - b. Guru menjelaskan secara konvensioanal tentang berkenalan dengan energi setelah melakukan pembelajaran ini.

- Siswa mengamati penjelasan tentang berkenalan dengan energi dalam kehidupan seharihari
- d. Siswa berdiskusi menuliskan tentang materi berkenalan dengan energi dalam kehidupan sehari-hari dengan kelompok masing-masing
- 5. Mempresentasikan dan menguji hasil penyelesaian proyek
 - a. Guru meminta masing-masing mewakili kelompok untuk maju ke depan atau berdua maju Bersama untuk melaporkan hasil diskusinya keseluruh siswa.(Comunication)
 - b.Guru memberikan kesempatan kepada kelompok lain untuk bertanya kepada kelompok yang sedang melakukan persentase (**Comunication**)
 - 6. Mengevaluasi dan refleksi proses dan hasil proyek
 - a.Guru memberikan penilaian kepada setiap kelompok yang sudah peresentase
 - b.Siswa mengumpulkan hasil diskusinya kepada guru setiap perwakilan kelompok masing-masing

Kegiatan Akhir

- 1. Guru dan siswa memberikan kesimpulan, penguatan pembelajaran tentang sumber energi, Bentuk energi serta proses perubahan bentuk energi dalam kehidupan sehari - hari (Comunication)
- 2. Guru dan siswa melakukan refleksi mengenai kegiatan pembelajaran.
 - Apa saja yang sudah dipelajari pada hari ini?
 - Apa kegiatan yang paling disukai?
 - Materi apa yang kalian kuasai?
 - 2. Guru melakukan test akhir yang *Post Test* kepada siswa
 - 3. Guru menyampaikan pesan moral (Comunication)
 - 4. Guru menugaskan ketua kelas untuk memimpin do'a untuk mengakhiri pelajaran (Religius, Beriman bertaqwa kepada Tuhan Yang Maha Esa)
- 5. Guru mengakhiri pembelajaran dengan salam penutup

LAMPIRAN-LAMPIRAN

- 1. Dilaksanakan secara konvensional
- 2. Bahan ajar
- 3. LKPD siswa yang dirancang oleh guru sesuai dengan kebutuhan yang Akan dilaksanakan

BAHAN BACAAN PENDIDIK

Buku Tematik Terpadu Kurikulum 2013 Kelas III Energi dan

Perubahannya Buku Energi di Sekitarku Ilmu Pengetahuan Alam (IPA)

Buku Asyiknya Belajar Ilmu Pengetahuan Alam untuk Kelas III SD dan MI

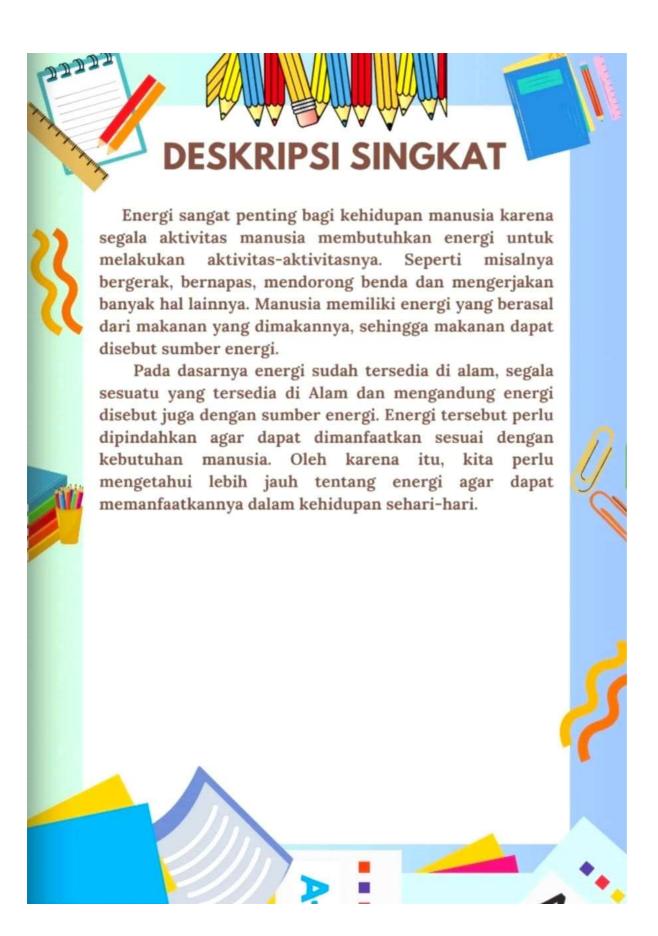
BAHAN BACAAN PESERTA DIDIK

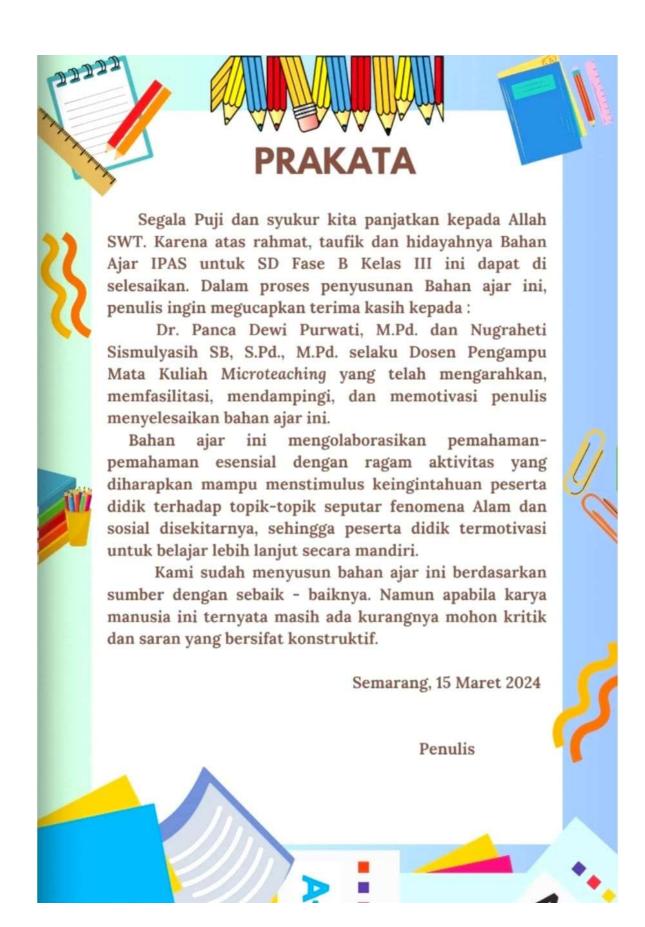
Buku Tematik Terpadu Kurikulum 2013 Kelas III Energi dan Perubahannya

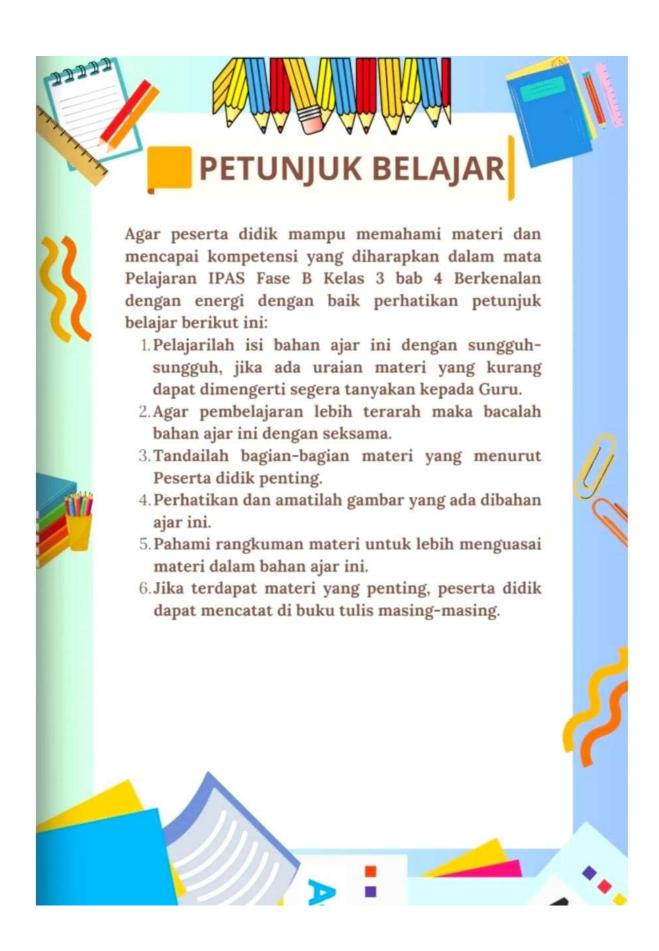
DAFTAR PUSTAKA

- Amelia Fitri,dkk 2022.Buku Panduan Guru Ilmu Pengetahuan Alam dan Sosial untuk SD/MI Kelas III. Jakarta: Kementrian pendidikan, Kebudayaan,Riset dan Teknologi.
- Amalia Fitri, dkk. 2022. Buku Panduan Guru Ilmu Pengetahuan Alam dan Sosial untuk SD kelas III. Jakarta: Kemendikbudristek RI.

Kepala sekolah SDN 101884 Limau Manis

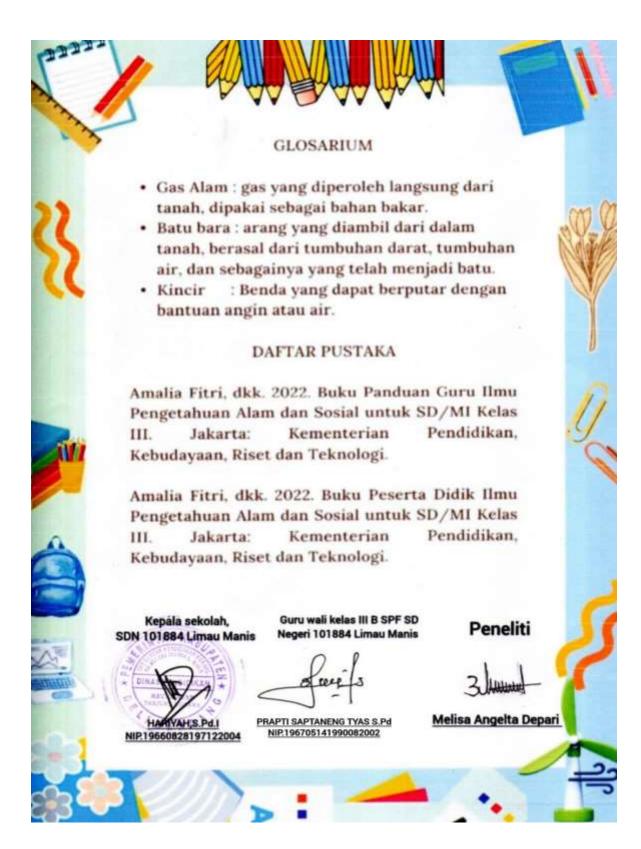

HARIYAH, SPALI


Guru Kelas III B UPT SPF SD Negeri 101884 Limau Manis


PRAPTI SAPTANENG TYAS S.Pd NIP.196705141990082002 Peneliti

Melisa Angelta Depari





LEMBAR VALIDASI SOAL TEST

Judul :Pengaruh Model Pembelajaran Tipe Think Pair Share Dengan Bantuan

Media Big Book Terhadap Hasil Belajar Siswa Pada Mata Pelajaran

IPAS Di Kelas III SD Negeri 101884 Limau Manis T.P 2024/2025

Materi : Berkenalan Dengan Energi

Kelas : III

Peneliti : Melisa Angelta Depari

NPM : 2105030274

Validator : Dr. Srie Faizah Lisnasari, M.Si

A. Petunjuk:

Bapak/Ibu dimohon memberikan penilaian dengan cara memberikan tanda () pada kolom yang tersedia pada tabel aspek kelayakan isi dan aspek kelayakan bahasa dan penulisan dengan kriteria skala penilaian telah ditentukan sebagai berikut:

Skor 4: Sangat baik (SB)

Skor 3: Baik (B)

Skor 2 : kurang (K)

Skor 1 : Sangat Kurang (SK)

Aspek kelayakan isi

No	Aspek Yang Divalidasi		Penilaian			
		1	2	3	4	
		SK	K	В	SB	
1	Soal sesuai dengan indikator yang ingin Dicapai				/	
2	Soal dirumuskan secara singkat dan Jelas				V	
3	Petunjuk pengerjaan soal dituliskan secara jelas				V	

2. Aspek bahasa dan penulisan soal

No	Aspek yang divalidasi		Penilaian				
		1	2	3	4		
		SK	K	В	SB		
1	Soal menggunakan bahasa Indonesia yang baku sesuai kaidah				/		
2	Soal menggunakan bahasa yang mudah dipahami dan tidak menimbulkan penafsiran ganda				V		

A. Kesimpulan

Instrumen penilaian essay pada materi listrik dinyatakan mohon diberi tanda () pada nomor sesuai dengan Kesimpulan Bapak/Ibu

Skala	Kategori kelayakan	()
4	Layak digunakan	
3	Layak digunakan setelah Revisi	
2	Layak digunakan setelah revisi major	
1	Tidak layak digunakan	

B. Komentar	Instru	men	Soal	sudah	layak
	digun	La Ican	2		

C. Saran	Dapat	diju	ugun	alcan	untuc
	peneli	han		***************************************	

Medan, 14 Nov 2024 Validator

Dr. Srie Faizah Lishasari, M.Si

NIDN, 25026706

Tes Hasil Belajar Siswa

Capaian pembelajaran	Indikator	Tujuan	Jenja	ang	Juml
		Pembelajaran	Kogr	nitif	ah
			C_2	C_3	Soal
Peserta didik mengidentifikasi	1.Peserta	1.Siswa dapat	1		1
sumber dan bentuk energi serta	didik dapat	Menyebutkan dua sumber			
menjelaskan proses perubahan	menyebutkan	energi yang			
bentuk energi dalam kehidupan	dua sumber	sering digunakan			
sehari-hari	energi yang	dalam			
A	ada di sekitar	kehidupan sehari-			
1 1 111	mereka.	hari, seperti			
NIVE		mat <mark>ahari dan</mark> angin	1	2	
	2. Peserta	2.Siswa dapat		1	1
	didik dapat	menjelaskan secara	1		
	mengenali	se <mark>de</mark> rhana			
	perubahan	ba <mark>ga</mark> imana energi listrik			
1000	bentuk energi	beru <mark>bah</mark>			
	dalam	menjadi energi cahaya			
	kehidupan	pada lampu			
	sehari-hari	senter			
	3.Peserta	3.Siswa dapat	1		1
	didik dapat	menjelaskan peran energi			
	menjelaskan	dalam			
	peran energi	kehidupan mereka,			
	dalam	seperti energi			
	kehidupan	panas dan matahari yang			
	sehari-hari	digunakan			
		untuk pengeringan.			
		pengernigan.			

	pentin berba sumb energ kehid sehar	mengapa analisis energi listrik sangat penting bagi gai kegiatan sehari-hari, seperti untuk i bagi penerangan dan perangkat elektronik.	5
--	--	---	---

Soal Pre Test Kelas III

Nama siswa

Mata Pelajaran : IPAS

Materi : Berkenalan Dengan Energi

Kelas : III

A. Petunjuk

1.Baca soal dengan teliti dan pahami apa yang ditanyakan.

- 2.Jawab sesuai pertanyaan dan berikan penjelasan sederhana jika perlu.
- 3.Periksa jawabanmu setelah selesai untuk memastikan semua soal sudah terjawab.

Soal

- 1.Sebutkan dua sumber energi yang ada disekitar kamu dan jelaskan mengapa sumber energi tersebut penting bagi kehidupan kita?
- 2.Kamu memiliki senter yang menggunakan baterai. Jelaskan Langkah-langkah bagaimana energi yang ada dalam baterai dapat menghidupkan senter dan menghasilkan cahaya?
- 3.Apa yang d<mark>imaksud den</mark>gan energi panas dari matahar<mark>i dan bagaim</mark>ana energi ini digunakan dalam kehidupan sehari-hari?
- 4.Jelaskan mengapa kita membutuhkan energi listrik dalam kehidupan sehari-hari
- 5.Bayangkan jika rumahmu tidak memiliki litrik. Bagaimana kamu akan melakukan kegiatan sehari-hari seperti belajar atau menonton TV? Jelaskan dengan contoh!.

Penyelesaian:

Soal Post Test Kelas III

Nama siswa

Mata Pelajaran : IPAS

Materi : Berkenalan Dengan Energi

Kelas : III

A. Petunjuk

1.Baca soal dengan teliti dan pahami apa yang ditanyakan.

- 2.Jawab sesuai pertanyaan dan berikan penjelasan sederhana jika perlu.
- 3.Periksa jawabanmu setelah selesai untuk memastikan semua soal sudah terjawab.

Soal

- 1.Sebutkan dua sumber energi yang ada disekitar kamu dan jelaskan mengapa sumber energi tersebut penting bagi kehidupan kita?
- 2.Kamu memiliki senter yang menggunakan baterai. Jelaskan Langkah-langkah bagaimana energi yang ada dalam baterai dapat menghidupkan senter dan menghasilkan cahaya?
- 3.Apa yang dimaksud dengan energi panas dari matahari dan bagaimana energi ini digunakan dalam kehidupan sehari-hari?
- 4.Jelaskan mengapa kita membutuhkan energi listrik dalam kehidupan sehari-hari
- 5.Bayangkan jika rumahmu tidak memiliki litrik. Bagaimana kamu akan melakukan kegiatan sehari-hari seperti belajar atau menonton TV? Jelaskan dengan contoh!

Penyelesaian:

Kunci jawaban Pre Test dan Post Test:

- 1. Sumber energi yang dapat disebutkan misalnya matahari dan angin. Matahari penting untuk memberi cahaya dan menghangatkan bumi
- 2. Ketika saklar senter dinyalakan, energi listrik dari baterai mengalir melalui rangkaian dan menuju bola lampu. Energi listrik ini mengalir dan mengubahnya menjadi cahaya di bola lampu.
- 3. Energi panas dari matahari adalah panas yang berasal dari sinar matahari. Energi ini digunakan untuk mengeringkan pakaian yang dijemur di bawah sinar matahari
- 4. Energi listrik diperlukan untuk menyalakan lampu agar kita dapat melihat di malam hari dan untuk mengoperasikan peralatan elektronik seperti televisi, kipas angin, dan komputer.
- 5. Tanpa listrik, kita tidak bisa menyalakan lampu untuk belajar di malam hari, atau menonton televisi. Kegiatan sehari-hari yang membutuhkan perangkat elektronik akan terganggu tanpa adanya pemasukkan listrik.

Rubrik Penilaian

N0	Soal	Skor	Jumlah
			Skor
1	Sebutkan dua sumber energi energi yang ada di sekitar kamu dan jelaskan mengapa sumber energi tersebut penting bagi kehidupan kita.	-Sebutkan dua sumber energi (15 Poin) -Jelaskan mengapa sumber energi tersebut penting (15 Poin)	30
2	Kamu memiliki senter yang menggunakan baterai. Jelaskan langkah-langkah bagaimana energi yang ada dalam baterai dapat menghidupkan senter dan menghasilkan cahaya.	-Energi dalam baterai(5 poin) -Energi mengalir melalui rangkaian (10 poin) -Lampu menyala (5 poin)	20
3	Apa yang dimaksud dengan energi panas dari matahari dan bagaimana energi ini digunakan dalam kehidupan sehari-hari?	-Definisikan energi panas dari matahari (5 poin) -Penggunaan energi panas dalam kehidupan sehari -hari (5 poin)	15
4	Jelaskan mengapa kita membutuhkan energi listrik dalam kehidupan sehari-hari.	-Penjelasan mengapa energi listrik diperlukan (10 poin) -Contoh penggunaan listrik dalam kehidupan sehari-hari (5 poin)	15
5	Bayangkan jika rumahmu tidak memiliki listrik. Bagaimana kamu akan melakukan kegiatan sehari-hari seperti belajar atau menonton TV? Jelaskan dengan contoh.	-Penjelasan kegiatan tanpa listrik (10 poin) -Solusi alternatif (10 poin)	20
Total	Jumlah		100

Lembar Soal Kelas III A (Eksperimen) Pre Test

Soal pre test Kelas III

Nama aswa Callisla numaya marbun

Mata Pelajaran : IPAS

: Berkmulan Dengan Energi Materi

: m a Kelas

A. Petunjuk

- 1. Baca soal dengan teliti dan pahami apa yang ditanyakan.
- Jawab sesuai pertanyaan dan berikan penjelasan sederhana jika perlu.
- 3.Periksa jawabanmu setelah selesai untuk memastikan semua soal sudah terjawab.

- 1 Sebutkan dua sumber energi yang ada disekitar kamu dan jelaskan mengapa sumber energi tersebut penting bagi kehidupan kita?
- 2.Kamu memiliki senter yang menggunakan baterai. Jelaskan Langkah-langkah bagaimana energi yang ada dalam baterai dapat menghidupkan senter dan menghasilkan cahaya?
- 3. Apa yang dimaksud dengan energi panas dari matahari dan bagaimana energi ini digunakan dalam kehidupan sehari-hari?
- 4 Jelaskan mengapa kita membutuhkan energi listrik dalam kehidupan sehari-hari
- Bayangkan pka rumahmu tidak memiliki litrik. Bagaimana kamu akan melakukan kegiatan schari-hari seperti belajar atau menonton TV? Jelaskan dengan contoh!.

Penyelesaian:

1. Energi kimia dan energi Listrik to 2 kidali bisa hidup jika tidah dipahai batera: 10 3-energi panas untuk mengeninghan pahaian 10 4-dipertuhan untuk menerangi rumah 5 5-mata ahan gelap dan tidak ada cahaya:

Post Test

Soal post test Kelas III

Namasiswa Callista Murnizya marbun

Mata Pelajaran : IPAS

Berkeralan Dengan Energi

III

A. Petunjuk

I.Baca soal dengan teliti dan pahami apa yang ditanyakan.

 Jawab sesuai pertanyaan dan berikan penjelasan sederhana jika perlu. 3.Periksa jawahanmu setelah selesai untuk memastikan semua soal sudah

Soal

terjawab.

l Sebutkan dua sumber energi yang ada disekitar kamu dan jelaskan mengapa sumber energi tersebut penting bagi kehidupan kita?

2.Kamu memiliki senter yang menggunakan baterai. Jelaskan Langkah-langkah bagaimana energi yang ada dalam baterai dapat menghidupkan senter dan menghasilkan cahaya? 3 Apa yang dimaksud dengan energi panas dari matahari dan bagaimana energi ini digunakan

dalam kehidupan sehari-hari?

4 Jelaskan mengapa kita membutuhkan energi listrik dalam kehidupan sehari-hari

5.Bayangkan jika rumahmu tidak memiliki litrik. Bagaimana kamu akan melakukan kegiatan sehari-hari seperti belajar atau menonton TV? Jelaskan dengan contoh!

Penyelesaian:

1- Sumber energi Listrik dan Cahaya sangat dibutuh han

dalam kehidupan hita sehani-hari 30 2. diharenahan adanya baterai didalam sumber maha dehharens Itu senter bisa dihiduphan dan menjadi

energicahaya 3. energe pauso sangat berguna diharenahan bisa nenyemur

q. harenshitz songat membutuhhan energi listnik supaya terang untuk belajar menuntun telanis dan sehagainya

5. Karena itu ada energi listrikdan ahan terang Dan unbuh mengerjahan adilitas sehari-hari

Lembar Soal Kelas III B (Kontrol) Pre Test

	110 100
	Soal pre test Kelas III
	Contract person and a second an
	20
	Nama siawa Phidal Hams
	Mata Pelajuran / IPAS
	Materi : Berkersilan Dengan Energi
	Kelas : III 3
A. Petu	njuk
	ool dengan teliti dan pahami upa yang ditunyakan.
2.Jawab 3.Periksi	sesuai pertanyaan dan berikan penjelasan sederhana jika perlu. 1 jawabannu setelah selesai untuk memastikan semua sual sudah
terjawal	b.
Soal	
Section 1	
dalam keh 4.Jelaskan 5.Bayungk	ng dimaksud dengan energi panas dari matahan dan bagaimana energi ini digunakan idupan sehari-hari? mengapa kita membutuhkan energi listrik dalam kehidupan sehari-hari can jika ramahmu tidak memiliki litrik. Bagaimana kamu akan melakukan kegiatan seperti belajar atau menonton TV? Jelaskan dengan contoh!
Penyelesai	an:
1. Energ	penas S
	connective professor 2
3 energ	of Parint days metalinen until mergenius pakelian (i)
4 SHPM	is here
1113	the bish menous passasan menunsuk dan mengenikrip
Seesa	4

Post Test

Soal post test Kelas III

Nama siswa : Abdut Hores

Mata Pelajaran : IPAS

Materi Berkenslim Dengan Energi

Kelas. 田馬

A. Petunjuk

1. Baca soal dengan teliti dan pahami apa yang ditanyakan.

2 Jawah sesuai pertanyaan dan berikan penjelasan sederhana jika perlu.

3 Periksa jawahanmu setelah selesai untuk memastikan semua soal sudah terjawab.

Soul.

- 1 Sebutkan dua sumber energi yang ada disekitar kamu dan jelaskan mengapa sumber energi tersebut penting bagi kehidupan kita?
- 2 Kamu memiliki senter yang menggunakan baterai. Jelaskan Langkah-langkah bagaimana energi yang ada dalam baterai dapat menghidupkan senter dan menghasilkan cahaya?
- 3 Apa yang dimaksud dengan energi panas dari matahari dan bagaimana energi ini digunakan dalam kehidupan sehari-hari?
- 4 Jelaskan mengapa kita membutuhkan energi listrik dalam kehidupan sehari-hari
- 5 Bayangkan jika rumahmu tidak memiliki litrik. Bagaimana kamu akan melakukan kegiatan sehari-hari seperti belajar atau menonton TV? Jelaskan dengan contoh!.

Penyelesaian:

- energy terms dan energy 15th 20
- tenova menunangkan butern di tempul beteria ini
- energ prose adolph energy dent meralian until terrino begin
- superior between memorial and mescula printy (0)
- Ruman aren gelep !

Data Kelas IIIA

Nilai Pre Test dan Post Test Siswa Kelas III-A

NO	NAMA		KELAS III A (EKSPERIMEN)
NU	NAMA		PRE TEST	POST TEST
1	AYSAH	30	65	
2	ANGGI MEICAN SIBUEA		35	70
3	ARUNI NASYA NAMORA NASUTIOI	N	40	80
4	ASSHYFA AZZAHRA		35	70
5	BALQISCALLISTA MAHARANI		50	80
6	CALLISTA NURMAYA S.MARBUN		40	100
7	DWI ANANTA		35	70
8	FAR <mark>HID</mark> ALTAHLA		50	85
9	HA <mark>F</mark> IZ <mark>PU</mark> TRA RAHM <mark>A</mark> N		45	70
10	KE <mark>I</mark> SHA MIKHAIRA GINTING	SPILES	50	80
11	KENZO ALPRADO SIAGIAN		45	80
12	KEYSIA SEREPHITA SIHOMBING		35	85
13	MARRKA ZAKIANSYAH		40	80
14	MARCELLO LOUVIN CHOWAN	0.0	40	100
15	MUHAMMAD AZKA ALFATIH		45	85
16	MUHAMMAD SYARIFAL AMANAH	SIREGAR	40	100
17	PANYA R <mark>OTUA GRE</mark> CIA PARDOSI		50	100
18	RENDY ALVARO SIRAIT		45	80
19	SANT <mark>A CHRISTINE HUT</mark> ABARAT		50	100
20	SHAK <mark>IL</mark> A NUR KHADIJ <mark>AH HA</mark> RAHA	.P	45	100
21	TKEYSIA OLIVIA		40	80
22	VANNY YOHANA SIREGAR		40	100
23	VIVILIAN NAZWA		50	85
24	WILDAN ADAM ASHARI		45	100

Nilai Rata-rata dan Standar Deviasi Pre Test Untuk Kelas III-A

No	x_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$
1	30	1	30	900	900
2	35	4	140	1225	4900
3	40	7	280	1600	11200
4	45	6	270	2025	12150
5	50	6	300	2500	15000
	Σ	24	1020	8250	44150

Rata-rata Pre Test:

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

$$\overline{x} = \frac{1020}{24}$$

$$\overline{x} = 42,5$$

Simpangan Baku Pre Test:

$$s^{2} = \frac{n(\Sigma f_{i} x_{1}^{2}) - (\Sigma f_{i} x_{i})^{2}}{n \times (n-1)}$$

$$s^{2} = \frac{24 \times 44150 - (1020^{2})}{24 \times (24-1)}$$

$$S = 5,898$$

Nilai Rata-rata dan Standar Deviasi Post Test Untuk Kelas III-A

	1444 1444 4411 5 4411441 5 4 1451 1 657 1 657 6 11441 114145					
No	x_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$	
1	65	1	65	4225	4225	
2	70	4	280	4900	19600	
3	80	7	560	6400	44800	
4	85	4	340	7225	28900	
5	100	8	800	10000	80000	
	$\sum_{i=1}^{n}$	24	2045	32750	177525	

Rata-rata Post Test:

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

$$\overline{x} = \frac{2045}{24}$$

$$\overline{x} = 85,21$$

Simpangan Baku Post Test:

$$s^{2} = \frac{n(\Sigma f_{i}x_{1}^{2}) - (\Sigma f_{i}x_{i})^{2}}{n \times (n-1)}$$

$$s^{2} = \frac{24 \times 177525 - (2045^{2})}{24 \times (24-1)}$$

$$S = 11,93$$

Data Kelas IIIB

Nilai Pre Test dan Post Test Siswa Kelas III-B

NO	NAMA	KELAS III I	B (KONTROL)
NO	NAMA	PRE TEST	POST TEST
1	ABDUL HARRIS	30	55
2	ADEVA KEISHA	50	60
3	AIMAR RADHINKA	50	55
4	ALVIRA PUTRI NIARA	45	55
5	AMIRA PUTRI KHANSA	40	70
6	AMELLI YAHYA	50	70
7	AVICA ISNAYAN	30	60
8	AZKA DINA NAYRA	40	80
9	CALISTA YUMNA SIAHIRA NASUTION	55	60
10	DAVA PRATAMA	45	100
11	DIRGAM ARIEF	50	80
12	FAD <mark>IL</mark> LATAN NISA	40	70
13	FAIZ HAMIZAN LUBIS	45	85
14	KHAIRUNNISA FADILAH	30	65
15	KHANZA KHAIRUNNISA	40	70
16	KELVAN ALCANTARA	45	85
17	MUHAMMAD DAFA AL FANSYA	60	80
18	MUHAMMAD FARHAN	40	100
19	MUHAMMAD RAFI	60	80
20	MUHAMMAD RAZIRSYA	30	65
21	NURUL ASSYFA	55	85
22	PANGERAN PRASTYO	45	85
23	RAFFI GUNAWAN	40	65
24	SRI RAHMA SARI	45	80
25	TIHANI ANINDYA	40	65
26	YUNI KHAIRUNISA	45	70

Nilai Rata-rata dan Standar Deviasi Pre Test Untuk Kelas III-B

No	x_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$
1	30	5	150	900	4500
2	40	7	280	1600	11200
3	45	7	315	2025	14175
4	50	4	200	2500	10000
5	55	3	165	3025	9075
	$\sum_{i=1}^{n}$	26	1110	10050	48950

Rata-rata Pre Test:

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

$$\overline{x} = \frac{1110}{26}$$

$$\overline{x} = 42,69$$

Simpangan Baku Pre Test:

$$s^{2} = \frac{n(\Sigma f_{i}x_{1}^{2}) - (\Sigma f_{i}x_{i})^{2}}{n \times (n-1)}$$

$$s^{2} = \frac{26 \times (48950) - (1110^{2})}{26 \times (26-1)}$$

$$S = 7,9$$

Nilai Rata-rata	dan	Standar	Daviaci	Doct Ton	t Hntuk	Kalac III	R
Niiai Kata-rata	cian	Standar	Deviasi	Post les	<i>t</i> Chillik	Neias III-	D.

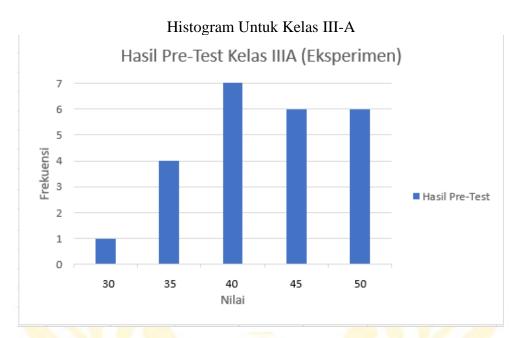
No	x_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$
1	55	3	165	3025	9075
2	60	3	180	3600	10800
3	65	4	260	4225	16900
4	70	5	350	4900	24500
5	80	5	400	6400	32000
6	85	4	340	7225	28900
7	100	2	200	10000	20000
	<u> </u>	26	1895	39375	142175

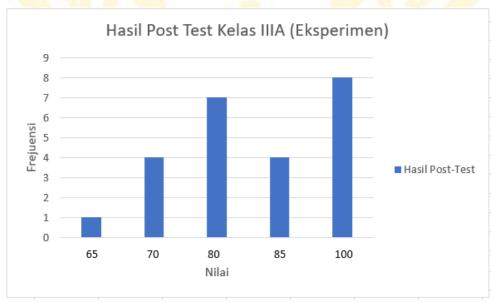
Rata-rata Post Test:

$$\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$$

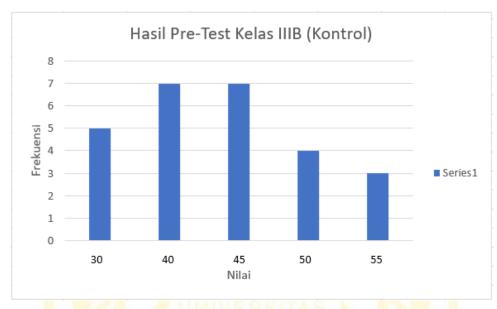
$$\overline{x} = \frac{1895}{26}$$

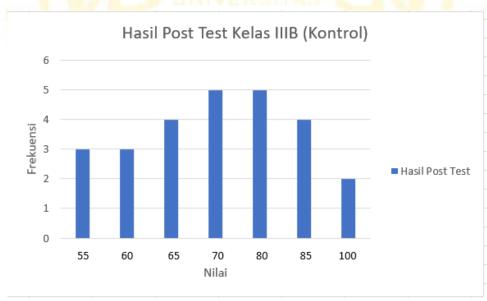
$$\overline{x} = 72,89$$


Simpangan Baku Post Test:


$$s^{2} = \frac{n(\Sigma f_{i}x_{1}^{2}) - (\Sigma f_{i}x_{i})^{2}}{n \times (n-1)}$$

$$s^{2} = \frac{26 \times (142175) - (1895^{2})}{26 \times (26-1)}$$


$$S = 12,74$$


Histogram Kelas IIIA dan IIIB

Histogram Untuk Kelas III-B

Hasil Uji Data

Menurut Sudjana (2022:446-467) Untuk uji normalitas dapat menggunakan uji Liliefors. Adapun dalam mencari normalitas data dapat dilakukan dengan sebagai berikut:

- 1. Mencari nilai $Z_i \frac{x_i \bar{x}}{s}$
- 2. Mencari nilai $F(z_i) = (Z \le Z_i) = 0.05$ ($Z \le Z_i$) dengan menggunakan tabel distribusi Z
- 3. Selanjutnya dihitung proporsi z_1 , z_2 ,... z_n yang lebih kecil atau sama dengan. Proporsi ini dapat dinyatakan dengan $S(Z_i) = \frac{banyak\ z_1,z_2,...z_n}{n}$
- 4. Hitung selisih $F(Z_i) S(Z_i)$, kemudian tentukan harga mutlaknya.

Data *Pre Test* Kelas III A (Eksperimen)

x_i	f_i	z_i	$F(z_i)$	$S(z_i)$	$ F(z_i) - S(z_i) $
30	1	-2.119	0.017	0.042	0.025
35	2	-1.272	0.102	0.083	0.018
35	3	-1.272	0.102	0.125	0.023
35	4	-1.272	0.102	0.167	0.065
35	5	-1.272	0.102	0.208	0.107
40	6	-0.424	0.336	0.25	0.086
40	7	-0.424	0.336	0.292	0.044
40	8	-0.424	0.336	0.333	0.002
40	9	-0.424	0.336	0.375	0.039
40	10	-0.424	0.336	0.417	0.081
40	11	-0.424	0.336	0.458	0.123
40	12	-0.424	0.336	0.5	0.164
45	13	0.424	0.664	0.542	0.123
45	14	0.424	0.664	0.583	0.081
45	15	0.424	0.664	0.625	0.039
45	16	0.424	0.664	0.667	0.002
45	17	0.424	0.664	0.708	0.044
45	18	0.424	0.664	0.75	0.086
50	19	1.272	0.898	0.792	0.107
50	20	1.272	0.898	0.833	0.065
50	21	1.272	0.898	0.875	0.023
50	22	1.272	0.898	0.917	0.018
50	23	1.272	0.898	0.958	0.060
50	24	1.272	0.898	1	0.102

Rata-Rata	42,5
Simpangan Baku	5,9
Lhitung	0,164
Ltabel	0,176

Berdasarkan perhitungan tabel di atas, diperoleh L_{hitung} 0,164 dengan sampel (n) = 24 dan taraf signifikan sebesar 0,05 diperoleh L_{tabel} 0,176. Maka Data nilai *pre test* kelas III A (Eksperimen) berdistribusi normal.

Kelas III B (Kontrol)

		TXCIU	III D (Ko		
x_i	f_i	z_i	$F(z_i)$	$S(z_i)$	$ F(z_i) - S(z_i) $
30	1	-1.606	0.054	0.038	0.016
30	2	-1.606	0.054	0.077	0.023
30	3	-1.606	0.054	0.115	0.061
30	4	-1.606	0.054	0.154	0.100
30	5	-1.606	0.054	0.192	0.138
40	6	-0.341	0.367	0.231	0.136
40	7	-0.341	0.367	0.269	0.097
40	8	-0.341	0.367	0.308	0.059
40	9	-0.341	0.367	0.346	0.021
40	10	-0.341	0.367	0.385	0.018
40	11	-0.341	0.367	0.423	0.056
40	12	-0.341	0.367	0.462	0.095
45	13	0.292	0.615	0.5	0.115
45	14	0.292	0.615	0.538	0.076
45	15	0.292	0.615	0.577	0.038
45	16	0.292	0.615	0.615	0.001
45	17	0.292	0.615	0.654	0.039
45	18	0.292	0.615	0.692	0.077
45	19	0.292	0.615	0.731	0.116
50	20	0.925	0.822	0.769	0.053
50	21	0.925	0.822	0.808	0.015
50	22	0.925	0.822	0.846	0.024
50	23	0.925	0.822	0.885	0.062
55	24	1.557	0.940	0.923	0.017
55	25	1.557	0.940	0.962	0.021
55	26	1.557	0.940	1	0.060

Rata-Rata	42,69
Simpangan Baku	7,9
L_0	0,138
Ltabel	0,171

Berdasarkan perhitungan tabel di atas, diperoleh L_{hitung} 0,138 dengan sampel (n) = 26 dan taraf signifikan sebesar 0,05 diperoleh L_{tabel} 0,171. Maka Data nilai *pre test* kelas III B (Kontrol) berdistribusi normal.

Sampel	Lhitung	L _{tabel}	Kesimpulan
Kelas III A	0,164	0,176	Berdistribusi normal
Kelas III B	0,138	0,171	Berdistribusi normal

Uji Normalitas Data *Post Test* Kelas III A (Eksperimen)

		$F(z_i)$	$S(z_i)$	$ F(z_i) - S(z_i) $
1	-1.694	0.045	0.042	0.003
2	-1.275	0.101	0.083	0.018
3	-1.275	0.101	0.125	0.024
4	-1.275	0.101	0.167	0.065
5	-1.275	0.101	0.208	0.107
6	-0.437	0.331	0.25	0.081
7	-0.437	0.331	0.292	0.040
8	-0.437	0.331	0.333	0.002
9	-0.437	0.331	0.375	0.044
10	-0.437	0.331	0.417	0.085
11	-0.437	0.331	0.458	0.127
12	-0.437	0.331	0.5	0.169
13	-0.017	0.493	0.542	0.049
14	-0.017	0.493	0.583	0.090
15	-0.017	0.493	0.625	0.132
16	-0.017	0.493	0.667	0.170
17	1.240	0.892	0.708	0.174
18	1.240	0.892	0.75	0.142
19	1.240	0.892	0.792	0.101
20	1.240	0.892	0.833	0.059
21	1.240	0.892	0.875	0.017
22	1.240	0.892	0.917	0.024
23	1.240	0.892	0.958	0.066
24	1.240	0.892	1	0.108
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	2 -1.275 3 -1.275 4 -1.275 5 -1.275 6 -0.437 7 -0.437 8 -0.437 9 -0.437 10 -0.437 11 -0.437 12 -0.437 13 -0.017 14 -0.017 15 -0.017 16 -0.017 17 1.240 18 1.240 19 1.240 20 1.240 21 1.240 21 1.240 22 1.240 23 1.240	2 -1.275 0.101 3 -1.275 0.101 4 -1.275 0.101 5 -1.275 0.101 6 -0.437 0.331 7 -0.437 0.331 8 -0.437 0.331 9 -0.437 0.331 10 -0.437 0.331 11 -0.437 0.331 12 -0.437 0.331 13 -0.017 0.493 14 -0.017 0.493 15 -0.017 0.493 16 -0.017 0.493 17 1.240 0.892 18 1.240 0.892 19 1.240 0.892 20 1.240 0.892 21 1.240 0.892 22 1.240 0.892 23 1.240 0.892	2 -1.275 0.101 0.083 3 -1.275 0.101 0.167 4 -1.275 0.101 0.208 6 -0.437 0.331 0.25 7 -0.437 0.331 0.292 8 -0.437 0.331 0.333 9 -0.437 0.331 0.375 10 -0.437 0.331 0.417 11 -0.437 0.331 0.458 12 -0.437 0.331 0.5 13 -0.017 0.493 0.542 14 -0.017 0.493 0.583 15 -0.017 0.493 0.625 16 -0.017 0.493 0.667 17 1.240 0.892 0.708 18 1.240 0.892 0.792 20 1.240 0.892 0.833 21 1.240 0.892 0.875 22 1.240 0.892 0.917 23 1.240 0.892 0.958

Rata-Rata	85,2
Simpangan Baku	11,93
Lo	0,174
Ltabel	0,176

Berdasarkan perhitungan tabel di atas, diperoleh L_{hitung} 0,174 dengan sampel (n) = 24 dan taraf signifikan sebesar 0,05 diperoleh L_{tabel} 0,176. Maka Data nilai post test kelas III A (Eksperimen) berdistribusi normal.

Kelas III B (Kontrol)

			111 2 (110	,		
x_i	fi	z_i	$F(z_i)$	$S(z_i)$	$ F(z_i) - S(z_i) $	
55	1	-1.404	0.080	0.038	0.042	
55	2	-1.404	0.080	0.077	0.003	
55	3	-1.404	0.080	0.115	0.035	
60	4	-1.011	0.156	0.154	0.002	
60	5	-1.011	0.156	0.192	0.036	
60	6	-1.011	0.156	0.231	0.075	
65	7	-0.619	0.268	0.269	0.001	
65	8	-0.619	0.268	0.308	0.040	
65	9	-0.619	0.268	0.346	0.078	
65	10	-0.619	0.268	0.385	0.117	
70	11	-0.226	0.410	0.423	0.013	
70	12	-0.226	0.410	0.462	0.051	
70	13	-0.226	0.410	0.5	0.090	
70	14	-0.226	0.410	0.538	0.128	
70	15	-0.226	0.410	0.577	0.166	
80	16	0.558	0.712	0.615	0.096	
80	17	0.558	0.712	0.654	0.058	
80	18	0.558	0.712	0.692	0.019	
80	19	0.558	0.712	0.731	0.019	
80	20	0.558	0.712	0.769	0.058	
85	21	0.951	0.829	0.808	0.021	
85	22	0.951	0.829	0.846	0.017	
85	23	0.951	0.829	0.885	0.055	
85	24	0.951	0.829	0.923	0.094	
100	25	2.128	0.983	0.962	0.022	
100	26	2.128	0.983	1	0.017	
	Rata-Rata			72,8		
	ngan Ba	ıku		12,74		
L ₀				0,16		
Ltabel	n narhit	un con tobo	al di ataa d	0,17	1 0 166 deno	

Berdasarkan perhitungan tabel di atas, diperoleh L_{hitung} 0,166 dengan sampel (n) = 26 dan taraf signifikan sebesar 0,05 diperoleh L_{tabel} 0,171. Maka Data nilai post test kelas III B (Kontrol) berdistribusi normal.

Sampel	L _{hitung}	\mathbf{L}_{tabel}	Kesimpulan
Kelas III A	0,174	0,176	Berdistribusi normal
Kelas III B	0,166	0,171	Berdistribusi normal

Hasil Uji Homogenitas Pre Test Kelas Eksperimen dan Kelas Kontrol

$$n_1=24\\$$

$$n_1 = 26$$

$$S_1^2 = (5,9)^2 = 34,783$$

$$S_2^2 = (7,9)^2 = 62,462$$

$$F = \frac{varians\ besar}{varians\ kecil}$$

$$F = \frac{62,462}{34,783}$$

$$F = 0.557$$

$$F_{\text{tabel}} = F_{(\alpha)((n2-1)(n1-1))}$$

$$F_{\text{tabel}} = F_{(0,05)((25)(23))} = 1,974$$

Sampel	Varians	f _{hitung}	f _{tabel}	Kesimpulan
Kelas III A	34,783			Homogen
(Eksperim <mark>en)</mark>	31,703	0,557	1,974	Homogen
Kelas III B	62,462	0,557	1,571	Homogen
(Kontrol)	02,402			Homogen

Post Test Kelas Eksperimen dan Kelas Kontrol

$$n_1 = 24$$

$$n_1 = 26$$

$$S_1^2 = (11,931)^2 = 142,346$$

$$S_2^2 = (12,742)^2 = 162,346$$

$$F = \frac{varians\ besar}{varians\ kecil}$$

$$F = \frac{162,346}{142,346}$$

$$F = 0.877$$

 $F_{tabel} = F_{(\alpha)((n2\text{-}1)(n1\text{-}1))}$

 $F_{tabel} = F_{(0,05)((25)(23))} = 1,974$

Sampel	Varians	f_{hitung}	f_{tabel}	Kesimpulan
Kelas III A	142,346			Homogen
(Eksperimen)	112,510	0,877	1,974	Homogen
Kelas III B (Kontrol)	162,346	0,077	1,774	Homogen

Hasil Uji Dua Kesamaan Rata-Rata

$$H_0: \mu_1 = \mu_2$$

$$n_1 = 24$$

$$\overline{x_1} = 42,5$$

$$\alpha = 0.05$$

$$H_1: \mu_1 \neq \mu_2$$

$$n_2 = 26$$

$$n_2 = 26$$
 $\overline{x_2} = 42,692$

$$S^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{(n_{1} + n_{2}) - 2}$$

$$S^{2} = \frac{(24-1)5,9^{2} + (26-1)7,9^{2}}{(24+26)-2}$$

$$S^2 = 49,199$$

$$S = 7,014$$

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt[s]{\frac{1}{n_1}} + \frac{1}{n_2}}$$

$$t = \frac{42,5 - 42,692}{\sqrt[7,014]{\frac{1}{24}} + \frac{1}{26}}$$

$$t = 0,285$$

$$t_{tabel} = n_1 + n_2 - 2$$

$$t_{tabel} = t_{0,05} (24+26-2)$$

$$t_{tabel} = t_{0,05} (48)$$

$$t_{tabel} = 1,67$$

Uji Hipotesis (Uji T) Menggunakan Ms Excel

t-Test: Two-Sample Assuming Equal Variances

	POST	POST
	TEST	TEST
Mean	85.20833	72.88462
Variance	142.346	162.3462
Observations	24	26
Pooled Variance	152.7628	
Hypothesized Mean Difference	0	
Df	48	
t Stat	3.522413	
P(T<=t) one-tail	0.000475	
t Critical one-tail	1.677224	
P(T<=t) two-tail	0.000949	
t Critical two-tail	2.010635	

SURAT UNTUK PENELITIAN

Jl. Ringroad - Ngumban Surbakti No. 18 Medan, Telp. (061) 80047003 web : www.universitasquality.ac.id | e-mail : info@universitasquality.ac.id

Medan, 02 December 2024

NOMOR : 5939/SPT/FKIP/UQ/XII/2024

LAMP

HAL : Izin Penelitian

Kepada Yth:

Ibu Hariyah S.Pd.I SD Negeri 101884 Limau Manis

Diberitahukan dengan hormat, bahwa mahasiswa kami : Nama : Melisa Angelta Depari

NPM : 2105030274

Program Studi : Pendidikan Guru Sekolah Dasar

Jenjang Pendidikan

Bermaksud sedang proses penyelesaian tugas akhir skripsi dengan Judul :

"Pengaruh Model Pembelajaran Tipe Think Pair Share dengan bantuan Media Big Book Terhadap Hasil Belajar Siswa pada Mata Pelajaran IPAS di Kelas III SD Negeri 101884 Limau Manis T.A 2024/2025"

Sehubungan dengan hal tersebut, mohon kiranya agar mahasiswa yang bersangkutan dapat diberikan ijin melakukan penelitian di tempat yang Bapak / Ibu Pimpin dengan alokasi waktu yang ditentukan.

Kami sangat mengharapkan bantuan Ibu agar sudi kiranya dapat memberikan data yang diperlukan berhubungan dengan judul Skripsi di atas.

Demikian kami sampaikan, atas perhatian dan kerja sama yang baik sebelumnya kami ucapkan terima kasih.

Dekan,

Dr. Gemala Widiyarti , S.Sos.L,M.Pd NIDN. 0123098602

Tembusan:

1. Ka. Prodi PGSD;

2. Dosen Pembimbing:

SURAT BALASAN DARI SEKOLAH

PEMERINTAH KABUPATEN DELI SERDANG DINAS PENDIDIKAN UPT SATUAN PENDIDIKAN FORMAL SDN 101884 LIMAU MANIS KECAMATAN TANJUNG MORAWA

NPSN: 102148230

NSS: 101070115010

Alamat :]In Pasar XIII Desa Limau Manis Kecamatan Tanjung Morawa Kode Pos : 20362

SURAT KETERANGAN

Nomor: 421.2/03/PD/2025

Yang bertanda tangan di bawah ini:

Nama

: Hariyah, S.Pd.I

NIP

: 196608281987122004

Jabatan

: Kepala Sekolah

Unit Kerja

: SD Negeri 101884 Limau Manis

Menerangkan bahwa:

Nama

: Melisa Angelita Depari

NPM

: 2105030274

Program Studi

: Pendidikan Guru Sekolah Dasar

Jenjang Pendidikan

- 5.1

Bahwa benar nama mahasiswa diatas telah melaksanakan penelitian di UPT SPF SDN 101884 Limau Manis dengan judul "Pengaruh Model Pembelajaran Tipe Think Pair Share dengan bantuan Media Big Book Terhadap Hasil Belajar Siswa pada Mata Pelajaran IPAS di Kelas III SD Negeri 101884 Limau Manis T.A 2024/2025".

Demikian Surat Keterangan ini diperbuat dengan sebenarnya.

Tanjung Motawa, 06 Januari 2025 Ka (1975) 450 101884 Limau Manis

HARTYAH,S.Pd.1 NIP, 196608281987122004

Dokumentasi DOKUMENTASI PRETEST KELAS III -A

DOKUMENTASI PRETEST KELAS III-B

DOKUMENTASI POSTEST DI KELAS III-A

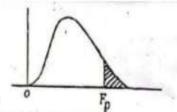
DOKUMENTASI POST TEST KELAS III-B

DOKUMENTASI GURU DAN SISWA KELAS III-A MENGGUNAKAN MEDIA BIG BOOK

DOKUMENTASI GURU DAN SISWA KELAS III-B TANPA MENGGUNAKAN MEDIA *BIG Book*

Lampiran 20

Tabel Luas di Bawah Lengkungan Kurva Normal


TABEL LUAS DI BAWAH LENGKUNGAN KURVA NORMAL DARI 0 S/D Z

2	0	1	2	3	4	5	8	7		9
0.0	0.0000	0.0040	0.0080	0.0120	0.0190	0.0199	0.0239	0.0279	0.0319	0.0359
1.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0006	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	1180.0	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
5.4	0.1554	0.1591	0.1629	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0:2086	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3078 0.3106	
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3299	0.3315	0.3340 0.3365 0.3577 0.3599 0.3790 0.3810		0.3386
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554			0.3621
1.1	0.3643	0.3665	0.3680	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0,4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4310
1.5	0.4332	0.4349	0.4357	0.4370	0.4382	0.4394	0.4406	5.4418	0.4429	0.4441
1.8	0.4452	0.4463	0.4474	0.4454	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4816	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4729	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4617
2.1	0.4821	0.4826	0.4830	0.4834	0.4536	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	D.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4900	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4945	0.4948	0.4949	0.4961	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4061	0.4962	0.4963	0.4964
2.7	0.4985	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4961	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4086	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4689	0.4989	0.4090	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4990
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4990
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4998	0.4996	0.4990	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4967	0.4067	0.4997	0.4906
15	0.4998	0.4998	0.4996	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4996
3.0	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4998
3.7	0.4999	0.4999	0.4999	0.4999	0.4009	0.4999	0.4999	0.4999	0.4999	0.4996
3.8	0.4999	0.4909	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4006
1.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000

Titik Persentase Distribusi t (df = 41 - 80)

Pr	0.25	0.10	0.05	0.025	0.01	0.005	0.001
df	0.50	0.20	0.10	0.050	0.02	0.010	0.002
41	0.68052	1.30254	1.68288	2.01954	2.42080	2.70118	3.30127
42	0.68038	1.30204	1.68195	2.01808	2.41847	2.69807	3.29595
43	0.68024	1.30155	1.68107	2.01669	2.41625	2.69510	3.29089
44	0.68011	1.30109	1.68023	2.01537	2.41413	2.69228	3.28607
45	0.67998	1.30065	1.67943	2.01410	2.41212	2.68959	3.28148
46	0.67986	1.30023	1.67866	2.01290	2.41019	2.68701	3.27710
47	0.67975	1.29982	1.67793	2.01174	2.40835	2.68456	3.2729
48	0.67964	1.29944	1.67722	2.01063	2.40658	2.68220	3.2689
49	0.67953	1.29907	1.67655	2.00958	2.40489	2.67995	3.2650
50	0.67943	1.29871	1.67591	2.00856	2.40327	2.67779	3.2614
51	0.67933	1.29837	1.67528	2.00758	2.40172	2.67572	3.2578
52	0.67924	1.29805	1.67469	2.00665	2.40022	2.67373	3.2545
53	0.67915	1.29773	1.67412	2.00575	2.39879	2.67182	3.2512
54	0.67906	1.29743	1.67356	2.00488	2.39741	2.66998	3.2481
55	0.67898	1.29713	1.67303	2.00404	2.39608	2.66822	3.2451
56	0.67890	1.29685	1.67252	2.00324	2.39480	2.66651	3.2422
57	0.67882	1.29658	1.67203	2.00247	2.39357	2.66487	3.2394
58	0.67874	1.29632	1.67155	2.00172	2.39238	2.66329	3.2368
59	0.67867	1.29607	1.67109	2.00100	2.39123	2.66176	3.2342
60	0.67860	1.29582	1.67065	2.00030	2.39012	2.66028	3.2317
61	0.67853	1.29558	1.67022	1.99962	2.38905	2.65886	3.2293
62	0.67847	1.29536	1.66980	1.99897	2.38801	2.65748	3.2269
63	0.67840	1.29513	1.66940	1.99834	2.38701	2.65615	3.2247
64	0.67834	1.29492	1.66901	1.99773	2.38604	2.65485	3.2225
65	0.67828	1.29471	1.66864	1.99714	2.38510	2.65360	3.2204
66	0.67823	1.29451	1.66827	1.99656	2.38419	2.65239	3.2183
67	0.67817	1.29432	1.66792	1.99601	2.38330	2.65122	3.2163
68	0.67811	1.29413	1.66757	1.99547	2.38245	2.65008	3.2144
69	0.67806	1.29394	1.66724	1.99495	2.38161	2.64898	3.2126
70	0.67801	1.29376	1.66691	1.99444	2.38081	2.64790	3.2107
71	0.67796	1.29359	1.66660	1.99394	2.38002	2.64686	3.2090
72	0.67791	1.29342	1.66629	1.99346	2.37926	2.64585	3.2073
73	0.67787	1,29326	1.66600	1.99300	2.37852	2.64487	3.2056
74	0.67782	1.29310	1.66571	1.99254	2.37780	2.64391	3.2040
75	0.67778	1.29294	1.66543	1.99210	2.37710	2.64298	3.2024
76	0.67773	1.29279	1.66515	1.99167	2.37642	2.64208	3.2009
77	0.67769	1.29264	1.66488	1.99125	2.37576	2.64120	3.1994
78	0.67765	1.29250	1.66462	1.99085	2.37511	2.64034	3.1980
79	0.67761	1.29236	1.66437	1.99045	2.37448	2.63950	3.1966
80	0.67757	1.29222	1.66412	1.99006	2.37387	2.63869	3.1952

DAFTAR |
Nikel Penencii
Ustok Dieteliusi F
| Milengus Delem Bedas Dellar
Menyatahan F_p ; Seris Alas Ustuk

¥- a																								
bentapri	t	1	3		5		1		,	10	11	12	14	16	20	24	30	40	50	15	100	760	ess.	_
1		-	216 1403	225 9625	230 8764	234 5850	237 6918	339 5951	6022 241	212 8035	243 6082	244 6105	6142	6169	248 6208	6224	6258	251 6286	252 6202	253 6323	253 6334	254 4352	254	254
																				15,48	13,49	19,49	19,50	
				18,71 28,71	28,24	27,91	21,61	27,49	8,81 27,34	8,78 27,23	8,76 27,13	8,74 27,05	8,71 25,92	8,60 26,83	6,66 26,69	8,54 25,40	8,62 26,50	8,60	8,51 25,20	8,57 25,27	A,56 25.21	8,51		
																				3,68 13,61				
3	8,81	8,79	3.41	5.19	5.05	4,95 10,67	1.88	4.82	4.78	4.74	4 90		4,54	4,68 9,68	4,54	4,50	1,30	4.46	1,44	1,42	121242I	4,28	4,27	4
			40.00	1,53	4,39 8,78	4,28 8,47	4,21 8,26	4,15 8,10	6,10 7,98	- 1977	4,83 1,79	4,00 7,72		1,92 T,12	2,57	3,61		1,77		2.72	3,11 8,99	2,65	2,58	1/
1	17,25	4,34 5,55	1,35 8,45	1,12 7,85	3,97 7,46	3,87	2,79 7,00	3,13 6,81	3,68 6,71	1,63 5,62	3,50 5,34	3,57 6,47	3,52 6,35	19.75	3,41 6.15		3,28 5,38	2,31	3,32	2,29	3,28	1,25	1,36	U
•	1,22 11,26	4,46 8,65	4,07 7,50	2,84 7,88	2,69 6,63	3,58 6,31	3,50 6,18	1,11	2,29 5,91	3,34 5,92		3,28	-	3,28		1,12	1,88	3,65	1,03	3,76	1,75	5,70	2,94	2,5
•	1,12 10,56	4,26 6,22	1,60 6,99	5,43 6,42	2,4W 6,08	11,0 114,6		3,23 5,17	2,18 5,35	1,12 5,26	3,10° 5,36,	3,01	1		252	1.50	2,86	2.81	1,05	2,37	2.16	1,91	2,72 1,33	2.7

93

die

Lampiran 21

Tahel	Nilai	Kritic	I. Untuk	Uii Liliefors
Labei	NIIAI			OH Linerois

-	Taraf Nyata (α)									
Okuran Sampal	0,01	0,05	0,10	0,15	0,20					
1 . 4	0,417	0,381	0,352	0,319	0,300					
5	0,405	0,337	0,315	0,299	0,285					
6	0,364	0,319	0,294	0,277	0,265					
7	0,348	0,300	0,276	0,258	0,247					
8	0,331	0,285	0,261	0,244	0,233					
9	0,311	0,271	0,249	0,233	0,223					
10	-0,294	0,258	0,239	0,224	0,215					
11	0,284	0,249	0,230	0,217	0,206					
12	. 0,275	0,242	0,223	0,212	0,199					
13	0,268	0,234	0,214	0,202	0,190					
14	0,261	0,227	0,207	0,194	0,183					
15	0,257	0,220	0,201	0,187	0,177					
16	0,250	0,213	0,195	0,182	0,173					
17	0,245	0,206	0,289	0,177	0,169					
18	0,239	0,200	0,184	0,173	0,166					
19	0,235	0,195	0,179	0,169	0,163					
20	0,231	0,190	0,174	0,166	0,160					
25	0,200	0,173	0,158	0,147	0,142					
30	0,187	0,161	0,144	0,136	0,131					
30	1,031	0,886	0,805	0,768	0,736					
90	-	-	0,000	-	Vn					
	Vn	√n	V n	√n						